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Summary. Functional data analysis has translated several concepts from classical statis-

tics. In this article we present functional Skewness and Kurtosis, based in the quantiles

of the functional data. We develop an interpretation for these estimators and test them in

real-world data.

1. Introduction

Functional data analysis is a new branch of statistics which, unlike classical statistics,

take the data as continuous functions (curves) over time or other continuous variable. In

fact, in several applied sciences the data obtained, with the advances in computational

capacity, are sampled over a finer grid, so it can be assumed that the data comes from

a family of continuous curves, hence allowing for the use of methodologies from curves.

Some of the mentioned applied science areas include: environmetrics, chemometrics,

biometrics, medicine, econometrics Ferraty and Vieu (2006). The main purpose of func-

tional data analysis is to present a statistical description of the data. Therefore many

of the classical statistics concepts and methods has been translated into functional data

analysis. As in classical descriptive statistics, the main descriptive parameters to be

estimated are: the mean, which describes the central tendency of the data, the standard

deviation, which accounts the dispersion of the data, the Skewness, which indicates the

symmetry of the data, and the Kurtosis, which gives a notion of the shape of the tails
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of the data.

There are several estimators for the Skewness and Kurtosis. Estimators based on

quantiles have been of special importance due to its capacity to replace the sensibility

to extreme data that the mean based estimators posess. The definition of the Kurtosis

has been attributed as the peakedness of the density distribution, however, there are

counterexamples like the t-student distribution, that put on doubt this affirmation. In

fact, an estimator based on quantiles can resolve this query. It is important to use more

clear definitions of Kurtosis, like the ones which are based on the tails of the probability

distribution of the data.

The main purpose of the present research proposal is to establish an estimator, for

functional data, of the Skewness and Kurtosis curves. This translation is planned to be

based on the quantiles of the data, in order to contribute to the theoretical development

of this recent area of research.

2. State of the art

The Skewness and Kurtosis have been responsible for the shape characteristics of the

probability distribution of data. As described in Fernandez and Fuentes (1995) there

are many estimators for the Skewness of the data, and of particular importance stands

out the Yule asymmetry coefficient which is based on the quantiles of the data. The

definition of the Kurtosis that this book presents aims at the peakedness of the density

function.

The parameters as Skewness and Kurtosis have been interpreted as the asymmetry

and peakedness of the data distribution, respectively. However, Moors (1988) presents

Kurtosis as the variations around the points µ±σ. In the latter article an estimation of

the Kurtosis based on the octiles is presented. The advantages of this formulation are:

1) it exists even when the moments of the distribution does not, 2) it does not depend

on the extreme tails of the distribution, 3) the calculation is simpler and graphically in-
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terpretable. The authors implement this estimator in various distribution and compare

the results. These estimations are based on univariate quantiles, which for that case

characterize the distribution of the data.

For the translation to FDA we need to account for the quantiles which have been

explored in the literature of functional data analysis. In Mengmeng Guo and Hardle

(2015) the authors use a functional data approach to estimate the quantiles of a gen-

eralized regression. For this, a PCA methodology is used in order to minimize a loss

function. From this methodology they find the quantile curves, and apply it to real

world data of weather stations in China. Fatima Benziadi and Tebboune (2016) use

a kernel estimation of the conditional quantiles for functional data for ergodic process

and determine consistency in this estimator.Walter (2011) explores a way of defining

functional quantiles for the real functional data, defined over a continuous interval. The

author uses the estimated quantiles to estimate the Skewness of a functional data-base

for finance to test whether the data has a positive tendency.

3. Methodology

In the present section the general terminology and definitions necessary to describe the

proposed methodology of functional skewness and kurtosis. First, a definition of skewness

and kurtosis based on quantiles is presented. Then the terminology of functional data

analysis is described and the definition of the functional quantiles. The theory and

definition presented is taken from Ferraty and Vieu (2006) and Walter (2011).

3.1. Skewness and Kurtosis based in quantiles

In Fernandez and Fuentes (1995) a definition of skewness based in quantiles is presented.

This definition of skewness allows a more meaningful insight into the definition of skew-

ness.

In figure 1 two probability distribution are presented: a normal distribution and

a gamma distribution. The following example is presented to identify the skewness

estimated with the quantiles of the distribution, the first with a symmetrical distribution
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and the second with an asymmetrical distribution. The formula of the estimator is

presented as follows:

B =
(Q3 −Q2) + (Q1 −Q2)

Q3 −Q1

Where Qi is the ith quartile. The logic behind this equation, also known as the Yule

asymmetry coefficient, is that we compare the distance between the first and third quan-

tile to the median, which corresponds to the second quantile. For a positive skewness,

the median will be closer to the first quantile, and for a negative skewness, the median

will be closer to the third quantile. So the sign of the numerator of B will be trans-

lated into the sign of the skewness. The denominator eliminates the units so B becomes

dimensionless.

Skewness normal:

 0.01059

Skewness Gamma:

 0.17616
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Skewness based on quantiles: Normal vs Gamma

Fig. 1: Skewness

As we can see in figure 1, the normal distribution is symmetric, while the gamma

distribution is not. This is why the normal distribution has an estimated skewness of

approximated zero, and the gamma distribution has positive estimated skewness. The

latter is biased to the left.

In Moors (1988) a definition for kurtosis based in quantiles is presented. In classical

statistics kurtosis have been wrongly defined as the peakedness of the distribution.
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In figure 2, a normal distribution and a t-student distribution are illustrated. The

t-student is a counterexample for the definition of Kurtosis as the peakedness of the

distribution. Here, the Kurtosis is estimated by the octiles of the distribution with the

following formula:

T =
(E7 − E5) + (E3 − E1)

E6 − E2

This formula estimates the dispersion around the values µ±σ. The argument behind

this formula is that if the distance between each of the terms in the numerator is large,

then there is small dispersion around the points µ± σ, and vice-versa.

Kurtosis normal:

 1.22051

Kurtosis t:

 1.36645
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Kurtosis based on quantiles: Normal vs t−student

Fig. 2: Kurtosis

In figure 3, the cumulative distribution functions of the distribution from figure 2 are

presented. We can observe the octiles E1, E3, E5, E7 of both distribution as the vertical

dotted lines. It is clear that the octiles E1, E2 and E5, E7 are further apart for the

t-student distribution, which can be translated that the dispersion around the points

µ ± σ is lower for the t-student distribution. Hence, the t-student distribution has a

higher kurtosis. Thus, solving the higher kurtosis of the t-student distribution without

referring to the peakedness of the distribution.

Now, several important definitions of the functional data analysis are presented. It
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Fig. 3: Kurtosis CDF

is needed to understand how to define functional quantiles and how to estimate them

empirically. The first important definition is the functional random variable, as it is

defined as follows.

3.2. Functional Random Variable

A random variable X : Ω → E is a functional random variable iff every X ∈ E is a

function X : M → F for some non-degenerate continuum M.

X is real functional random variable iff every X ∈ E is a function mapping I → R,

where I = [a, b], a, b ∈ R and a < b

The cumulative distribution can also be defined for functional random variables. As

we know univariate quanitles, cumulative distribution function is important to define

quantiles. Distributional functional are defined as follows:

3.3. Distribution Functional

If X : Ω→ E is a real functional random variable then the distributional functional is:

FX (X) = P [X (t) ≤ X(t) for all t ∈ I]
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Now that we have the definition of functional random variable and distribution func-

tional, we can define the functional quantiles. This definition is based in the marginal

distribution function. The definitions of functional quantiles is defined as follows:

3.4. Functional quantiles

If X : Ω → E is a real functional random variable with marginal distribution function

FX (X) at t ∈ I then the α quantile of X is:

Qα(t) = inf{x ∈ R : FX (X) ≥ α}, for t ∈ I

Finally, this quantiles need to be estimated from an empirical database. The say to

do it is to replace the distributional functional by its empirical estimation. The definition

of empirical estimation of functional quantiles is presented as follows:

3.5. Empirical estimation of functional quantiles

The estimation for the functional quantiles utilizes the empirical estimation for the func-

tional empirical distribution function. The formula for estimating the latter is presented

as follows:

F̂X(t) =
1

n

n∑
i=1

1{Xi ≤ t}

Let X be a real functional random variable and let {X1(t),X2(t), . . . ,Xn(t)} be a

functional dataset generated by X . Let F̂X (t) be the empirical marginal distribution

function at t ∈ I based on the dataset. The estimation of the α − quantile for the

sample {X1(t),X2(t), . . . ,Xn(t)} is:

Qα(t) = inf{x ∈ R : F̂X (t)(x) ≥ α}, for t ∈ I

3.6. Functional Skewness and Kurtosis based on quantiles

Finally, the estimators are presented as follows:



8 Francisco Zuluaga

3.6.1. Functional Skewness

Let X be a functional random variable with quantiles Qα(t). The functional Skewness

is:

B(t) =
(Q3(t)−Q2(t)) + (Q1(t)−Q2(t))

Q3(t)−Q1(t)

3.6.2. Functional Kurtosis

Let X be a functional random variable with quantiles Qα(t). The functional Kurtosis is:

T (t) =
(E7(t)− E5(t)) + (E3(t)− E1(t))

E6(t)− E2(t)

3.7. Interpretation

Skewness in functional data analysis can be interpret as the direction of the tendency of

the functions. If the skewness is positive, then the quantile3 is further away from the

median function than the quantile1, then there is more probability in every t that the

functions generated by the functional random variable will have an upward tendency

over the continuos interval. The same reasoning applies in the opposite direction.

On the other hand, Kurtosis reflects several characteristics of the functional data-set.

Low Kurtosis function can be seen as an indication of a bimodal distribution. This can

be interpreted as the data-set coming from two different functional random variables. A

high Kurtosis function can be an indication of high density around the mean function

and the tails of the distribution. This definition of Kurtosis for functional data matches

the definition of Kurtosis based on quantiles. In the latter, the Kurtosis is interpret as

the inverse measure of density around the points µ ± σ. Therefore, when the Kurtosis

is low, the points µ ± σ show high density, the two modes of the bimodal functional

distribution.
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4. Results

4.1. Data Description

For the results, we are using two data-bases. The first one is taken from Febrero-Bande

and Gonzalez-Manteiga (2008) and it contains trajectories measured hourly for contam-

ination (NOx) levels in Pobleanu measured in µg/m3 from the day February 23 to the

day June in the year 2005. The second data-base, growth data-set, contains the heights

of 39 boys and 53 girls between the age 1 to 18.

Fig. 4

As we can observe from figure 4 a complete description for the Poblenau data. In the

first plot the functional data-set is presented and the first, second and third functional

quartiles are the red lines. In the interval (0,5) hours the third quartile is slightly further

from the the functional median than the first quantile. This result affects directly the

Skewness, as we can observe in the figure of Skewness, the black line is slightly higher

than the normal Skewness. For the next interval (5,13) hour the first and third func-

tional quartiles are more separated than before due to the increase in the dispersion of

the curves. The distance between the third and first quartile from the median mantains.
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For the last interval (13,24) hour it is clear that the third quartile starts getting further

away from the median than the first quartile, so the Skewness increases as well, as we

observe in the Skewness figure. The curves, in the latter interval have a positive tendency.

The next figure illustrates the functional octiles for the data-set. The octiles help

calculate the functional Kurtosis representend in the figure below. For the interval (0,5)

hours the distance between the first and third octile, and the fifth and seventh octile

remained generally constant. For the interval (5,11) hours the distance for the latter

octiles starts increases, so the Kurtosis starts increasing as well. For the interval (12,24)

the distance for the first and third octile reduces, but the distance from the fifth to the

seventh octile starts increases, so the Kurtosis remains constant.

In the last two figures the classical functional estimators are presented: functional

mean, median and variance. For the entire interval, the functional mean is slightly higher

than the functional median. This reflects that the functional mean is biased towards the

upper outliers. This also reflects that the functional random variable is for the most part,

asymmetric, as well as presented in the Skewness figure, but with an upper tendency at

the last 5 hours. The final figure represents the functional variance for the data-set.

For a better illustration for the definition of Kurtosis we use the growth data-set. As

we can observe in figure 5 the blue curves represent the heights for the boys and the red

curves represent the heights for the girls. For the interval (1,15) years the two types of

curves seem to come from the same functional random variable. This matches with the

high Kurtosis in this interval from the figure below, where the Kurtosis is higher than

the Kurtosis for a Gaussian process. This deduction reflects a high density around the

median of the curves and the tails. For the interval (15,18) years the two types of curves

starts having different median. This matches with the definition of Kurtosis, where the

density of the curves lies aruond the points µ± σ, and from this point the two types of

curves probably come from two different types of functional random variables.
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Fig. 5: Kurtosis for Growth data-set
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5. Conclusions

In the present article we have translated the concepts of Skewness and Kurtosis, based on

quantiles, to functional data analysis. In order to estimate these functional parameters,

we used the estimators based on quantiles from classical statistics. Finally, we used the

definition of functional quantiles to obtain the final estimators. We also developed an

intuitive interpretation for these estimators for real-life use. Finally, we tested these

estimators in real-world data and obtained a complete description for the curves.
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